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Abstract

Gradient inversion attacks are a big security concern and barrier for adoption of
Federated Learning in applications that handle sensitive or confidential data. Huang
et al. [11] evaluated this attack against a multitude of defenses with the MNIST,
CIFAR-10, and ImageNet datasets, although the attack and defenses’ efficacy on
medical image data is yet to be assessed. In this project, we first reproduce a
subset of the original paper’s results by training and evaluating the data utility
and security of a ResNet-18 model trained on CIFAR-10 with different defense
combinations of GradPrune, MixUp, and Intra-InstaHide. Then we extend the
original paper by running similar experiments on a Brain Tumor MRI dataset [3].
We confirm the authors’ findings that combinations of stronger gradient pruning
and Intra-InstaHide methods prove to be most secure against gradient inversion
attacks, although in exchange for a noticeable drop in model performance. With
the MRI dataset specifically, we find that the use of any strong defenses undercuts
any data utility of the model to the point that its use is as bad or worse than random
guessing. We also find that the MRI dataset’s higher complexity makes the attack
infeasible even in low-defense settings. More generally, we conclude that the
success of the attack on any model depends heavily on batch size, randomness,
and attacker’s computational power, rendering the attack unreliable when applied
to models with almost any defense applied, especially when targeting higher
resolution data. All code and most results associated with this project can be found
at: https://github.com/oleggolev/GradAttack-Med.

1 Introduction

Federated learning is a promising method for secure distributed training with medical data given its
computational efficiency and high security promises. A lot of research was conducted to develop or
evaluate federated learning methods and defenses for trustless environments to mitigate attacks such
as model poisoning [2] [6], membership inference [15], reconstruction using gradient inversion [20],
reconstruction with differential privacy [1], and many others [5] [9]. A lot of these and other potential
issues with federated learning prevent its use in the medical domain [13], necessitating further work
to ensure that federated learning systems deliver on their promises. The gradient inversion attack is
one type of reconstruction attack where a malicious participant or a man-in-the-middle uses shared
model’s weight updates to reconstruct the original training data, making the attack a big threat in
high data privacy applications.

To explore the gradient inversion attack and understand its potential threat to enabling federated
learning applications in medical settings, we replicate a subset of results from Huang et al. [11]
and set a baseline for the efficacy of the gradient inversion attack when performed on a ResNet-18
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model trained with different defenses on the CIFAR-10 dataset. We then evaluate the same attack
and defense methods on the brain tumor classification MRI dataset [3] which is much more detailed
and complex than CIFAR-10. We find that the computational requirements, the effect of randomness,
and the hyper-parameter tuning needed for running the image-based gradient inversion attack all
contribute to the high overhead for the attacker of performing the attack effectively. For CIFAR-10,
defense methods that combine gradient pruning and an encoding scheme prove extremely successful
at preventing data leakage, as found in the original paper, but we further note that given MRI image
complexity, even simple or no defenses could be sufficient for safeguarding input image data, with
stronger defenses making the models useless.

2 Related Work

2.1 Gradient Inversion Attack

Originally shown as a viable pixel-level attack by Zhu et al. [20], the gradient inversion attack
recovers input from model gradients in image classification applications. The attacker approximates
the original input image x ∈ Rb×d by computing x∗ given the neural network with parameters θ,
gradient ∇θLθ(x

∗, y∗) where b is batch size of private data, d is the image size, and the recovery is
regularized by a well-chosen function Raux(x) based on some prior:

argmin
x

Lgrad(x; θ,∇θLθ(x
∗, y∗)) + αRaux(x) (1)

The attack was found effective given careful choice of Lgrad and Raux(x) on ImageNet images [7]
[17] and therefore constitutes a powerful adversarial tool in breaking federated learning systems. The
strongest attacks used by Geiping et al. [7] in their paper make two assumptions:

1. The attacker knows the batch normalization statistics of the target private batch.

2. The attacker knows the private labels associated with the target images.

The second assumption can be made safely since private label information about a single image
can be inferred relatively accurately from the gradient. However, the first assumption is certainly
unrealistic. In either case, the strongest state-of-the-art attack can be best approximated by making
these two assumptions, so Huang et al. [11] and this project use them to construct the strongest attack
for gradient inversion defense evaluation.

2.2 Defenses

For both the CIFAR-10 and the Brain Tumor MRI datasets, we evaluate the gradient inversion attack
by training a ResNet-18 model with the following defenses:

1. Gradient pruning involves setting p proportion of the gradients of the smallest magnitudes
to zero and is a common technique for making model training more efficient [16]. Gradient
pruning is also useful in preventing reconstruction attacks and does so even more effectively
than regular dropout [14].

2. MixUp is a data augmentation method used to increase generalization and stability of neural
networks where the model is trained on linear combinations of k images instead of the
images themselves [18]. To be more precise, MixUp is a simple technique which produces a
synthetic training sample s̃1 by combining an image s1 with k−1 other images s2, s3, ..., sk
according to some contribution factors {λ1, ..., λk}:

s̃1 = λ1s1 +

k∑
j=2

λjsj where

k∑
j=1

λj = 1 (2)

3. InstaHide is a more complex encoding scheme but has the same intuition as MixUp as to
how it helps against adversarial attacks [12]. In practical terms, InstaHide functions more
like a light-weight encryption method that makes it difficult for adversaries to recover input
data by mixing up k images with one another according to the following construction:
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s̃1 = σ ◦

λ1s1 +

k∑
j=2

λjsj

 (3)

That is, we first create a composite image from original image s1 similar to MixUp and then
apply a random sign-flipping pattern σ ∈ {−1, 1}d to that composite image via coordinate-
wise vector multiplication. InstaHide is specifically designed as a method that avoids the
high overhead of real cryptographic methods but makes up for MixUp’s vulnerabilities. The
Intra-InstaHide version of this technique uses images from the private dataset which is a
weaker defense against gradient inversion attacks than Inter-InstaHide (which uses public
images). For our experiments, we use Intra-InstaHide as was used by the original paper and
to conceive the strongest possible attack.

All three defenses are evaluated individually and in combination, as in the original paper to evaluate
the impact of the strongest attack on data utility and security.

2.3 Brain Tumor Classification MRI Dataset

Glioblastoma Multiforme (GBM) is one of the most common but also the most malignant and
deadly variants of brain tumors [10]. Early detection through the use of artificial intelligence is a
possible pathway for improving brain tumor diagnostics, and federated learning can help crowdsource
more data for doing so more accurately in an automated way. Thus we evaluate the above-described
defenses and the strongest gradient inversion attack to assess its performance and security preservation
impact on ResNet-18 trained with the SARTAJ Brain Tumor Classification MRI dataset [3].

This dataset a good example of a higher resolution (512× 512) medical image dataset and contains
contains MRI images split into four fairly balanced classes: no tumor (396 training and 106 testing
samples), pituitary tumor (828 training and 75 testing samples), meningioma tumor (823 training and
116 testing samples), and glioma tumor (827 training and 101 testing samples). Each class is also
balanced in the number of MRI images that are taken in three different planes: sagittal, coronal, and
axial. Samples from the dataset are provides in Figure 1.

Figure 1: Sample MRI images contained in the Brain Tumor Classification MRI dataset [3].
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3 Methods

3.1 Experimental Design

The target paper by Huang et al. [11] runs many experiments on multiple baselines with the MNIST,
CIFAR-10, and ImageNet datasets. We reproduce a subset of the paper results on the CIFAR-10
dataset. For both the CIFAR-10 dataset and the Brain Tumor MRI dataset, we conduct these two types
of experiments: (1) model training with defenses and performance evaluation, and (2) attack execution
and data privacy evaluation. More simply, both datasets were used to train a ResNet-18 model with
different defenses applied before evaluating the strong gradient inversion attack. Specifically, we
consider the following defenses and their combinations:

• GradPrune (gradient pruning) was applied with varying the pruning ratios p ∈
{0.5, 0.7, 0.9, 0.95, 0.99, 0.999} as in the paper.

• MixUp was applied by varying k ∈ {2, 4, 6, 8} with the constraint on all λi < 0.65. The
original paper only evaluated k ∈ {4, 6}. We expand on the choices of k as we would like
to better explore the effect of k on the model performance to data leakage trade-off.

• Intra-InstaHide was applied similarly to MixUp by changing k ∈ {2, 4, 6, 8} with λi <
0.65. The original paper also only evaluated k ∈ {4, 6} for this defense.

• A combined defense of GradPrune with either MixUp or Intra-InstaHide. The original
paper only evaluated p ∈ {0.9}, k ∈ {4} while we evaluate every combination of parameters
p ∈ {0.7, 0.9, 0.99} and k ∈ {2, 4, 6}.

The goal is to understand the trade-off between the defenses’ impact on model accuracy and data
security when subjected to a strong gradient inversion attack, in which the attacker has knowledge of
the labels and BatchNorm statistics of the private input batches. Furthermore, the extension to the
Brain Tumor MRI dataset seeks to explore whether a state-of-the-art attack is dangerous or even at
all feasible when dealing with high-resolution medical image data.

3.2 Running the Experiments

The original paper’s code was substantially modified and extended to run the experiments since
the provided code at https://github.com/Princeton-SysML/GradAttack was incomplete and
victim to significant code rot over the past few years. All experiments were run on the Princeton
University Adroit cluster using the NVIDIA A100 GPUs.

3.2.1 Training

ResNet-18 is trained for 200 epochs in the CIFAR-10 experiments and for 50 epochs in the Brain
Tumor MRI dataset experiments due to time constraints. All models are trained with batch size = 128
using the SGD optmizer with momentum = 0.9, and 0.02 of the training data used for validation
(recommended by original authors and experimentally confirmed in this project). The following
parameter settings were used for different defense profiles (based on either the setup or the results of
the original paper):

• No Defenses and GradPrune: initial learning rate = 0.05, learning rate decay = 0.5 every
30 epochs.

• MixUp and GradPrune+MixUp: initial learning rate = 0.1, learning rate decay = 0.5
every 30 epochs.

• InstaHide and GradPrune+InstaHide: initial learning rate = 0.05, learning rate decay
= 0.1 every 50 epochs.

3.2.2 Attack

Due to the heavy dependency on randomness and lack of computational power to run the attacks
to their fullest potential, all attacks used the same hyper-parameters that were set by default in the
example script with only minor modifications as recommended by the paper. All attacks were run
for 10,000 iterations using the Adam optimizer with the strongest setting (batch norm statistics and
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private data labels are known) using batch size of 1, αTV = 0.1, and batch norm regularization term
αBN = 0.005.

The batch size of 1 is chosen intentionally to simulate the strongest attack. Previous research [7] and
the original paper [11] show that analyzing smaller batch sizes enables stronger attacks. On the other
hand, using larger batch sizes like 32 makes the reconstructed images almost unrecognizable with
most defenses. Thus the use of batch size = 1 gives us the lower bound on the amount of privacy
preservation that the evaluated defenses can provide.

All attacks were run with the same seed = 62. Based on conversations with Samyak Gupta (one of
the author’s of the original paper), the gradient inversion attack was found to be extremely sensitive
to the starting seed thus necessitating multiple runs to pick out the best results. This is one of the
reasons why the original paper reran the attack multiple times and only presented the best results as
measured by LPIPS scores.

After the gradient inversion attack, the decode step is applied to MixUp and InstaHide models [4]
to attempt to recover the actual original image. For this decoding step, we assume that the attacker
knows the k private images and their mixing coefficients. While this is unrealistic, it enables the
strongest attack and thus it is done this way in the original paper and in this project.

3.3 Evaluation Metrics

As in the original paper, we evaluate our experiments by observing the following two items:

1. Test accuracy of each model trained with a different defense profile

2. Average, best, and standard deviation of the LPIPS (Learned Perceptual Image Patch
Similarity) scores [19] which measure the similarity (or distance) between the original
and reconstructed images. Higher score indicates more difference between the images and
therefore better privacy preservation. The LPIPS statistics are computed based on a small
(50 images) pre-selected subset of each dataset.

The provided example scripts also contain methods to compute PSNR ( Peak signal-to-noise ratio)
and RMSE (Root Mean Squared Error) statistics, but these are neither included in the original paper
nor are included here. The original paper also reports training time. However, we did not record this
data empirically and only give approximations in the next section.

4 Results and Discussion

4.1 CIFAR-10 Dataset

We first ran all experiments as defined in the previous section on the CIFAR-10 dataset. The training
for each experiment took between 15 minutes and 3 hours 30 minutes depending on parameters,
defenses applied, and the fluctuating load on the Adroit nodes. Adding gradient pruning during
training did not significantly change the training runtime, with most GradPrune experiments taking
between 15 and 30 minutes. In comparison, MixUp and InstaHide experiments took about 2 to 3
hours each, while the defense combination experiments are the ones that took up to 3 and a half
hours to run. In comparison to the original paper’s results, these runtimes are significantly longer. We
attribute this to the fact that in the original paper, the experiments were run on an isolated 8 GPU
cluster of RTX 2080 Ti’s. In comparison, it is not uncommon for Adroit to be extremely slow even
though it has access to powerful hardware.

The original paper’s results (Table 1) from these experiments are as follows:

1. With no defenses, the attack recovers images closely for batch size = 1.

2. Higher pruning ratios for GradPrune-integrated defense packs result in higher security in
exchange for proportionately worse performance.

3. While increasing k yields less data leakage, MixUp does not do well enough on its own to
protect the input images from reconstruction and is similar in its data leakage properties to
higher p GradPrune defenses.
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4. Intra-InstaHide takes another small (∼ 2% accuracy hit compared to MixUp but in exchange
for much better better privacy preservation properties.

5. Combining Intra-InstaHide with GradPrune allows for best security in exchange for ∼ 4%
drop in accuracy compared to only using one of the defenses.

None GradPrune (p) MixUp (k) Intra-InstaHide (k) GradPrune (p = 0.9)
+ MixUp + Intra-InstaHide

Parameter - 0.5 0.7 0.9 0.95 0.99 0.999 4 6 4 6 k = 4 k = 4

Test Acc. 93.37 93.19 93.01 90.57 89.92 88.61 83.58 92.31 90.41 90.04 88.20 91.37 86.10

Time (train) 1× 1.04× 1.06× 1.06× 1.10×

Attack batch size = 1

Avg. LPIPS ↓ 0.19 0.19 0.22 0.35 0.42 0.52 0.52 0.34 0.46 0.58 0.61 0.41 0.60
Best LPIPS ↓ 0.02 0.02 0.05 0.14 0.22 0.32 0.36 0.12 0.25 0.41 0.42 0.21 0.43
(LPIPS std.) 0.16 0.17 0.16 0.13 0.11 0.08 0.06 0.08 0.07 0.06 0.09 0.07 0.09

Table 1: Accuracy-security trade-off of different defenses as reported in the original paper. The training
accuracy is computed as the average over 5 independent runs, and the LPIPS scores are computed on a subset of
50 CIFAR-10 images (lower values suggest more privacy leakage). Only attack batch size of 1 is included since
that is what was reproduced in this project.

Our results (Tables 2 and 3) are generally similar to those of the original paper, with no defenses and
GradPrune with lower p having the least impact on both data utility (performance remains high) and
data security (reconstruction is still doable). For model performance more generally, we find that our
trained models perform very similarly to what was found by the original authors.

However, our LPIPS scores are much higher and more inconsistent for two reasons:

1. Our experiments had to be cut short due to the high computational cost of running them
to completion given time constraints, sometimes producing only a few of the 50 images
picked out of the CIFAR-10 dataset that are chosen to be reconstructed. For example, for
models trained on a combination of GradPrune and Intra-InstaHide, reconstruction took
long enough for no images to be reconstructed in a hour’s time (see Table 3). Thus, our
LPIPS statistics generally appear unstable and inconsistent.

2. Based on the conversation with one of the original paper authors, the successful reconstruc-
tion of the original input image depends heavily on the starting random seed. Choosing a
good seed is the difference between getting a colorful mess and a very accurate reconstruc-
tion without changing any other parameters. Due to time constraints, we could not run the
attack multiple times with different seeds to evaluate the attack’s full potential.

Even with the above obstacles, we were able to reconstruct, albeit not well (see Figure 2), the original
images for models with no defenses and models trained with GradPrune with small p. These two
observations also make for a good caveat about the attack in general: the attack is unreliable and
requires high computational power to perform. In fact, the original paper authors spent around 3
weeks running experiments on 8 GPUs to produce all the results. Thus an attacker or a curious
participant in a federated learning network would have to incur non-trivial costs when running the
gradient inversion attacks.

None GradPrune (p) MixUp (k) Intra-InstaHide (k)

Parameter - 0.5 0.7 0.9 0.95 0.99 0.999 2 4 6 8 2 4 6 8

Test Acc. 92.81 92.82 93.04 91.62 90.97 89.00 81.97 93.27 93.70 92.69 91.10 91.49 90.83 89.92 88.78

Attack batch size = 1

Avg. LPIPS ↓ 0.53 0.51 0.53 0.54 0.59 0.57 0.68 0.59 0.59 0.61 0.52 0.36 0.35 0.37 0.35
Best LPIPS ↓ 0.47 0.40 0.49 0.47 0.51 0.51 0.62 0.43 0.38 0.56 0.48 0.32 0.29 0.33 0.31
(LPIPS std.) 0.04 0.07 0.02 0.05 0.05 0.06 0.05 0.11 0.11 0.05 0.04 0.03 0.05 0.02 0.02

Table 2: Accuracy-security trade-off for individual defenses as run on the Adroit cluster. The training accuracy
is computed in a single run, and the LPIPS scores are computed on however many CIFAR-10 images the attack
could reconstruct in the span of one hour (this is done due to computational constraints and large runtime
requirements of the attack).
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GradPrune (p = 0.7) GradPrune (p = 0.9) GradPrune (p = 0.99)
+ MixUp + Intra-InstaHide + MixUp + Intra-InstaHide + MixUp + Intra-InstaHide

Parameter k 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6

Test Acc. 92.6 92.7 92.1 90.2 89.9 89.8 90.2 90.0 89.6 87.4 87.3 86.4 10.0 82.0 10.0 74.5 74.4 73.1

Attack batch size = 1

Avg. LPIPS ↓ 0.58 0.56 0.56 0.37 0.36 -.– 0.61 0.55 0.57 0.34 -.– -.– 0.74 0.56 0.69 0.37 -.– -.–
Best LPIPS ↓ 0.42 0.44 0.53 0.30 0.29 -.– 0.45 0.42 0.47 0.27 -.– -.– 0.64 0.43 0.63 0.33 -.– -.–
(LPIPS std.) 0.09 0.07 0.03 0.05 0.06 -.– 0.09 0.07 0.06 0.04 -.– -.– 0.06 0.07 0.040 0.03 -.– -.–

Table 3: Accuracy-security trade-off for combined defenses as run on the Adroit cluster. The associated
experiments were subject to the same limitations as the experiments in Table 2. Some entries are missing because
the experiments timed out before a single image could be reconstructed.

Figure 2: At the top are two sample image reconstructions achieved with 10,000 iteration GradPrune
p = 0.7 attack. The bottom graphic is taken from the original paper, showcasing the full attack
potential. Unfortunately, reaching this potential requires much longer runtimes than what was
available for the execution of this project.
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4.2 Brain Tumor MRI Dataset

For the MRI dataset, we ran the same set of experiments with the same hyperparameters that we used
for the CIFAR-10 dataset. However, we only trained the MRI models for 50 epochs (as opposed
to 200) due to time constraints. The results of the experiments on the MRI dataset are shown in
Table 4. Given the higher complexity of the dataset and difficulty of the task, a simple quickly
trained ResNet-18 model could only achieve 68.3% test accuracy with no defenses applied. Based
on other people’s work with this dataset [8], a ResNet-50 model could potentially achieve around
77% test accuracy which is still significantly lower than what we’ve seen with the CIFAR-10 dataset.
Correspondingly, while applying the GradPrune defense reflects expected results (decreasing model
performance proportional to increasing data security), using either of the encoding schema proves
detrimental to model performance, making it essentially unusable.

None GradPrune (p) MixUp (k) Intra-InstaHide (k)

Parameter - 0.5 0.7 0.9 0.95 0.99 0.999 2 4 6 8 2 4 6 8

Test Acc. 68.3 62.81 63.71 55.43 59.1 62.92 56.87 30.70 28.75 35.39 20.70 20.50 20.70 20.50 22.46

GradPrune (p = 0.7) GradPrune (p = 0.9) GradPrune (p = 0.99)
+ MixUp + Intra-InstaHide + MixUp + Intra-InstaHide + MixUp + Intra-InstaHide

Parameter k 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6

Test Acc. 34.8 29.3 33.4 20.5 21.7 15.8 31.9 31.7 34.6 46.7 23.2 21.3 25.6 31.9 22.7 17.4 20.7 22.7

Table 4: Test accuracy of models trained on the Brain Tumor MRI dataset. The results were produced with the
same constraints as for the CIFAR-10 dataset.

The original code was also adopted to perform the gradient inversion attack on a small subset of the
MRI images. However, given the trained models’ poor performance even with no defenses applied,
the even higher computational costs due to the dataset’s higher resoltuion, and our previous unstable
LPIPS findings with CIFAR-10 experiments, the attacks were mostly unsuccessful and the LPIPS
scores were thus omitted from Table 4. Still, some reconstructions on this dataset look like they’d be
useful to an attacker. We also note that the general patterns of the images are reconstructed relatively
well (see Figure 3). Thus defense methods should definitely still be used when working with higher
resolution medical image data.

5 Conclusion and Limitations

This project was a fascinating exploration of the state-of-the-art gradient inversion attack. We
replicated a big portion of the findings in Huang et al. [11] and further adopted their code for
evaluation on the Brain Tumor MRI dataset. Through this project, we found that InstaHide mixed
with GradPrune is a very effective defense against gradient inversion attacks, at the cost of model
performance. However, in the case of a higher complexity dataset like the MRI dataset, the encoding
defenses were detrimental to model performance, making GradPrune the more reliable choice of
defense against gradient-based reconstruction. Above all, we note that the gradient inversion attack
is very computationally expensive, unreliable, and, to achieve its full strength, requires unrealistic
knowledge of the private data. Still, an upper bound on the attack’s strength needs further exploration,
specifically on larger models used with more complex datasets, to truly understand whether the attack
poses a threat to federated learning for high-resolution medical image applications.
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Figure 3: Sample reconstructions of some images in the Brain Tumor MRI dataset.
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